EconPapers    
Economics at your fingertips  
 

Nowcasting with large Bayesian vector autoregressions

Jacopo Cimadomo, Domenico Giannone, Michele Lenza, Francesca Monti and Andrej Sokol

No 2453, Working Paper Series from European Central Bank

Abstract: Monitoring economic conditions in real time, or nowcasting, is among the key tasks routinely performed by economists. Nowcasting entails some key challenges, which also characterise modern Big Data analytics, often referred to as the three \Vs": the large number of time series continuously released (Volume), the complexity of the data covering various sectors of the economy, published in an asynchronous way and with different frequencies and precision (Variety), and the need to incorporate new information within minutes of their release (Velocity). In this paper, we explore alternative routes to bring Bayesian Vector Autoregressive (BVAR) models up to these challenges. We find that BVARs are able to effectively handle the three Vs and produce, in real time, accurate probabilistic predictions of US economic activity and, in addition, a meaningful narrative by means of scenario analysis. JEL Classification: E32, E37, C01, C33, C53

Keywords: Big Data; business cycles; forecasting; mixed frequencies; real time; scenario analysis (search for similar items in EconPapers)
Date: 2020-08
New Economics Papers: this item is included in nep-big, nep-ets, nep-for and nep-mac
Note: 352854
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2453~465cb8b18a.en.pdf (application/pdf)

Related works:
Journal Article: Nowcasting with large Bayesian vector autoregressions (2022) Downloads
Working Paper: Nowcasting with Large Bayesian Vector Autoregressions (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ecb:ecbwps:20202453

Access Statistics for this paper

More papers in Working Paper Series from European Central Bank 60640 Frankfurt am Main, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Official Publications ().

 
Page updated 2025-03-31
Handle: RePEc:ecb:ecbwps:20202453