EconPapers    
Economics at your fingertips  
 

Effects of terrain slope on long-term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions

M. Turunen, L. Warsta, M. Paasonen-Kivekäs, J. Nurminen, L. Alakukku, M. Myllys and H. Koivusalo

Agricultural Water Management, 2015, vol. 150, issue C, 139-151

Abstract: Water outflow pathways affect environmental loads from agricultural fields, but the pathways and effects of terrain topography on their proportions and on drainage design are not known in detail. In this study, a long-term hydrological dataset and 3D FLUSH model were applied to a field-scale assessment of multi-yearly and seasonal water balance in two adjacent clayey subsurface drained agricultural fields with different slopes (1% and 5%). The model was calibrated and then run with an hourly time step of input data throughout five studied years, and it was able to reproduce the measured water balance components. The results suggested that macropore flow had an essential role in the field-scale hydrological processes in clayey agricultural fields. The model provided a quantification how terrain slope increased the amount of groundwater outflow and correspondingly decreased the amount of drain discharge. The implication is that the hydrological effects of topography of the field and surrounding areas should be taken into account when optimizing drainage intensities. Though most of the groundwater outflow occurred outside the growing periods, sustained groundwater outflow occurred throughout all seasons. A correspondence was observed between the near-saturated surface soil conditions and tillage layer runoff (TLR) events, which suggests that TLR events in high-latitude clayey fields are mainly triggered by saturation excess mechanism. During two springs (once in both field section) TLR was clearly higher than during other seasons, which was likely induced by soil frost. However, the model without computational schemes for frost-induced changes on soil hydraulic properties satisfactorily reproduced drain discharge during most spring periods, and the amount of measured TLR was low during most springs, which indicates that typically frost-induced changes on TLR generation may be small. However, inaccuracies in the quantification of TLR induced by snowmelt formed uncertainty to the estimate of the water balance components during snowmelt.

Keywords: Water balance; Groundwater outflow; 3D modeling; Hillslope hydrology; Drainage; Preferential flow (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377414003928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:150:y:2015:i:c:p:139-151

DOI: 10.1016/j.agwat.2014.12.008

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:150:y:2015:i:c:p:139-151