Response of first flood irrigation timing after rice dry-direct-seeding: Productivity and greenhouse gas emissions in Central China
Qingwei Jiang,
Weiqin Wang,
Qian Chen,
Shaobing Peng,
Jianliang Huang,
Kehui Cui and
Lixiao Nie
Agricultural Water Management, 2016, vol. 177, issue C, 241-247
Abstract:
A major challenge in rice (Oryza sativa L.) production is to simultaneously achieve the goals of reducing water consumption, labor requirements and greenhouse gas (GHG) emissions while maintaining a sustainable grain yield. Dry direct-seeded rice (DDSR) has been proposed as an alternative rice production strategy because it reduces water consumption and labor requirements and increases system productivity. To evaluate the responses of grain yield, yield components, water productivity and GHG emissions to different first flood irrigation times under DDSR, field experiments were conducted under three different first-irrigation times: 15, 30 or 45days after sowing (DAS) in 2014 and 15, 35 or 55 DAS in 2015. The precipitation in the 45 DAS was 291mm in 2014 and 160mm in 2015. The results indicated that the grain yields under DDSR were not affected by the different flooding times in 2014 but were significantly reduced when the first flood irrigation time was prolonged to 55 DAS in 2015. Delaying the first flood irrigation time after sowing conserved water and significantly increased water productivity (WP) under DDSR. Prolonging the first flood irrigation time after sowing markedly decreased the CH4 gas emission, although delaying the first flood irrigation time increased the N2O gas emission, the global warming potential was significantly reduced. Based on these findings, we put forward the recommendation that the timing of first flood irrigation can be postponed to 45 DAS with precipitation levels higher than 160mm under DDSR in central China. However, long-term studies across different environments are inevitable to get definite conclusions.
Keywords: Dry direct-seeded rice; First flood irrigation time; Yield; Water productivity; Greenhouse gas emission (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416302906
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:177:y:2016:i:c:p:241-247
DOI: 10.1016/j.agwat.2016.08.006
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().