EconPapers    
Economics at your fingertips  
 

Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling

Yu Feng, Ningbo Cui, Daozhi Gong, Qingwen Zhang and Lu Zhao

Agricultural Water Management, 2017, vol. 193, issue C, 163-173

Abstract: Accurate estimation of reference evapotranspiration (ET0) is of importance for regional water resource management. The present study proposed two artificial intelligence models, random forests (RF) and generalized regression neural networks (GRNN), for daily ET0 estimation. Meteorological data including maximum/minimum air temperature, solar radiation, relative humidity, and wind speed during 2009∼2014 from two stations in southwest China were used to train and test the RF and GRNN models by using two input combinations, including complete data and only temperature and extraterrestrial radiation (Ra) data. The k-fold test was adopted to test the performance of models according to temporal and spatial criteria and data set scanning procedures. The results indicated that both local and external RF and GRNN models performed well for estimating daily ET0, and RF was slightly better than GRNN generally. The high fluctuations in the accuracy ranges justify the importance of applying k-fold test for assessing the model performance, which could avoid drawing partially valid conclusions from model assessments based on simple data set assignment. Overall, both temperature-based RF and GRNN models can accurately estimate daily ET0, which is helpful for irrigation scheduling in southwest China.

Keywords: Reference evapotranspiration; Random forests; Generalized regression neural networks; Modeling; K-fold test (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302597
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:193:y:2017:i:c:p:163-173

DOI: 10.1016/j.agwat.2017.08.003

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:193:y:2017:i:c:p:163-173