EconPapers    
Economics at your fingertips  
 

Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia

Abebech Beyene, Wim Cornelis, Niko E.C. Verhoest, Seifu Tilahun, Tena Alamirew, Enyew Adgo, Jan De Pue and Jan Nyssen

Agricultural Water Management, 2018, vol. 202, issue C, 42-56

Abstract: The deep percolation and actual evapotranspiration from flood irrigation in tropical floodplains were predicted using a numerical model, Hydrus-1D, and a bucket type water balance model. Field experiments were conducted on onion and maize crops grown from December 2015 to May 2016 in small irrigation schemes found in the Lake Tana floodplains of Ethiopia. Experimental fields were selected along a topographic transect to account for soil and groundwater variability. Irrigation volumes were measured using V-notches and irrigation depths (400–550 mm) were calculated, and daily groundwater levels were monitored manually from piezometers installed in the fields. The soil profiles were described at each field and physical properties (texture, FC, PWP, BD, and OM) were measured at each horizon which were used to derive model input parameters. Soil hydraulic properties (residual and saturated moisture content, saturated hydraulic conductivity, parameters related to: pore size distribution n, air entry α and pore connectivity l) were derived using KNN pedotransfer functions for tropical soils and fitted using Retention Curve Program for Unsaturated Soils, RETC. The seasonal actual evapotranspiration estimated by Hydrus and water balance models ranged from 320 to 360 mm for onion and from 400 to 470 mm for maize. The seasonal deep percolation estimated from both models was 12–41% of applied irrigation and with this flood irrigation management; the deep percolation is very high. Implementing precise irrigation and water saving practices that minimize deep percolation and unproductive excessive consumptive use are required to achieve the growing food demand with the available water. When less detailed information is available, the water balance model can be an alternative to predict deep percolation and actual evapotranspiration.

Keywords: Deep percolation; Irrigation; Soil water balance; Hydraulic parameters; Hydrus-1D; Ethiopia (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418300726
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:202:y:2018:i:c:p:42-56

DOI: 10.1016/j.agwat.2018.01.022

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:42-56