EconPapers    
Economics at your fingertips  
 

Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes

Paula Paredes, Diogo S. Martins, Luis Santos Pereira, Jorge Cadima and Carlos Pires

Agricultural Water Management, 2018, vol. 210, issue C, 340-353

Abstract: This study aims at assessing the accuracy of estimating daily grass reference evapotranspiration (PM-ETo) computed with ERA-Interim reanalysis products, as well as to assess the quality of reanalysis products as predictors of daily maximum and minimum temperature, net radiation, dew point temperature and wind speed, which are used to compute PM-ETo. With this propose, ETo computed from local observations of weather variables in 24 weather stations distributed across Continental Portugal were compared with reanalysis-based values of ETo (ETo REAN). Three different versions of these reanalysis-based ETo were computed: (i) an (uncorrected) ETo based on the individual weather variables for the nearest grid point to the weather station; (ii) the previously calculated ETo corrected for bias with a simple bias-correction rule based only on the nearest grid point; and (iii) the ETo corrected for bias with a more complex rule involving all grid points in a 100 km radius of the weather station. Both bias correction approaches were tested aggregating data on a monthly, quarterly and a single overall basis. Cross-validation was used to allow evaluating the uncertainties that are modelled independently of any forcing; with this purpose, data sets were divided into two groups. Results show that ETo REAN without bias correction is strongly correlated with PM-ETo (R2>0.80) but tends to over-estimate PM-ETo, with the slope of the regression forced to the origin b0 ≥ 1.05, a mean RMSE of 0.79 mm day−1, and with EF generally above 0.70. Cross-validation results showed that using both bias correction methods improved the accuracy of estimations, in particular when a monthly aggregation was used. In addition, results showed that using the multiple regression correction method outperforms the additive bias correction leading to lower RMSE, with mean RMSE of 0.57 and 0.64 mm day−1 respectively. The selection of the bias correction approach to be adopted should balance the ease of use, the quality of results and the ability to capture the intra-annual seasonality of ETo. Thus, for irrigation scheduling operational purposes, we propose the use of the additive bias correction with a quarterly aggregation.

Keywords: Meteorological variables; FAO Penman-Monteith ETo; Accuracy indicators; Raw reanalysis data; Cross-validation; Bias correction methods (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741830516X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:210:y:2018:i:c:p:340-353

DOI: 10.1016/j.agwat.2018.08.003

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:340-353