EconPapers    
Economics at your fingertips  
 

A coupled model for simulating water flow and solute transport in furrow irrigation

Kun Liu, Guanhua Huang, Xu Xu, Yunwu Xiong, Quanzhong Huang and Jiří Šimůnek

Agricultural Water Management, 2019, vol. 213, issue C, 792-802

Abstract: For optimal water and fertilizer management under furrow irrigation, it is important to understand the water and solute dynamics on the land surface and in the subsurface. An efficient mathematical tool is required to describe these dynamic processes. We propose a coupled model in which surface water flow and solute transport are described using the zero-inertia equation and the average cross-sectional convection-dispersion equation, respectively, while the two-dimensional Richards equation and the convection-dispersion equation are used to simulate water flow and solute transport in soils, respectively. Solutions are computed numerically using finite differences for surface water flow and finite volumes for solute transports in furrow. Subsurface water flow and solute transport equations are solved using the CHAIN_2D code. An iterative method is used to couple computations of surface and subsurface processes. Both surface and subsurface water flow and solute transport modules are coded in program subroutines and functions in the Intel FORTRAN environment. The coupled model was validated by comparing its simulation results with measured data. Results showed that simulated water front advances in the furrow and water contents in the soil agreed with the observations reasonably well. Good simulations can be achieved with a relatively fine temporal resolution. Numerical oscillations can be eliminated by adopting appropriate time steps. As compared with the traditional furrow irrigation model, the proposed model can better quantify soil water and solute dynamics by considering interactions between surface and subsurface water flow and solute transport processes. The proposed model can be used as a decision tool to design and manage furrow irrigation.

Keywords: Surface irrigation; Solute transport; Mathematical model; Coupling procedure (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418304177
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:213:y:2019:i:c:p:792-802

DOI: 10.1016/j.agwat.2018.11.024

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:792-802