EconPapers    
Economics at your fingertips  
 

Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area

Sevim Seda Yamaç, Cevdet Şeker and Hamza Negiş

Agricultural Water Management, 2020, vol. 234, issue C

Abstract: This study evaluated the performance of deep learning (DL), artificial neural network (ANN) and k-nearest neighbour (kNN) models to estimate field capacity (FC) and permanent wilting point (PWP) using four combinations of soil data. The DL, ANN and kNN models are compared with the previous published pedotransfer functions (PTF). The data consist of 256 calcareous soil samples collected from Konya-Çumra plain, Turkey. The results demonstrated that the DL_a with inputs of soil texture components, bulk density, organic matter and lime contents, particle density and aggregate stability showed the best performances with coefficient of determination (R2) of 0.829, correlation coefficient (r) of 0.911, mean absolute error (MAE) of 0.027 and relative root mean square error (RRMSE) 9.397 % in FC estimation for calcareous soil samples. For the PWP estimation of calcareous soil samples, the kNN_b with soil texture components, bulk density, organic matter and lime content and particle density indicated the best performance with the value of R2 to 0.800, of r to 0.894, of MAE to 0.021 and RRMSE to 12.043 %. Lastly, the results showed that the DL, ANN and the kNN models perform better than the previously applied PTF for calcareous soils. Therefore, the DL model could be recommended for the estimation of FC when full soil data are available and the kNN model could be recommended for estimation of PWP with all combinations of soil data.

Keywords: Field capacity; Permanent wilting point; Deep learning; Artificial neural network; k-nearest neighbour (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741932356X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:234:y:2020:i:c:s037837741932356x

DOI: 10.1016/j.agwat.2020.106121

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s037837741932356x