EconPapers    
Economics at your fingertips  
 

Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China

Yong Yang, Rensheng Chen, Chuntan Han and Zhangwen Liu

Agricultural Water Management, 2021, vol. 244, issue C

Abstract: The accurate calculation of potential evapotranspiration (PET) is a critical step in researching evapotranspiration, hydrology and many other fields. Numerous models have been developed to quantify PET from standard meteorological observations, and combination methods are usually considered the most physically reasonable. However, adequate observations of meteorological variables for combination methods are unavailable in many locations, making it necessary to select alternative PET models with fewer data requirements. Here, a set of 18 models including four aerodynamic methods, five temperature-based methods, six radiation-based methods, and three combination methods were evaluated using meteorological measurements from 789 stations in four climatic zones in China: the mountain plateau zone (MPZ), temperate monsoon zone (TMZ), temperate continental zone (TCZ), and subtropical monsoon zone (SMZ). The annual PET calculated in each of the four climatic zones showed large discrepancies among the 18 models, and the largest disparity nationwide was 2.95-fold. The combination models performed best for calculating PET in all four climatic zones, followed by the radiation-based models, and both categories outperformed the aerodynamic and temperature-based methods. The Rohwer model was the only recommended aerodynamic method, and the Romanenko model was the only recommended temperature-based method for calculating PET in China. The Turc model was marginally the best radiation-based model in the SMZ, TMZ and TCZ, and the Hargreaves model in the MPZ, but both should be applied with caution in cold months. The Penman model was the recommended combination method in all four zones. Further comparison of the best models from each category showed that the Rohwer model might overestimate PET in the TMZ and TCZ, and underestimate it in the MPZ and SMZ. The Romanenko model overestimated PET, and the Turc and Hargreaves models both underestimated PET in all four zones, especially in the MPZ. The empirical coefficients of the five recommended models were regional calibrated to meet the requirements of PET calculation in different climatic zones.

Keywords: Potential evapotranspiration; Pan evaporation; Aerodynamic method; Temperature-based method; Radiation-based method; Combination method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420320928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320928

DOI: 10.1016/j.agwat.2020.106545

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320928