EconPapers    
Economics at your fingertips  
 

Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm

Jing Zheng, Junliang Fan, Fucang Zhang, Lifeng Wu, Yufeng Zou and Qianlai Zhuang

Agricultural Water Management, 2021, vol. 249, issue C

Abstract: Soil mulching can effectively modify the crop growth environment and increase crop productivity in rainfed agriculture. Accurate estimation of crop evapotranspiration (ET), especially its transpiration (T) component, is crucial for understanding the crop water use and predicting crop yield in agricultural ecosystems. Nevertheless, direct measurement of T in the field is often difficult, expensive, destructive and time-consuming. Daily rainfed maize T under four mulching methods (NM: non-mulching, SM: straw mulching, RPBF: plastic-mulched ridge with bare furrow, and RPSF: plastic-mulched ridge with straw-mulched furrow) was obtained from sap flow measurements over four maize growing seasons (2015–2018) in Northwest China. A modified Jarvis-Stewart model (MJS) and a support vector machine model optimized by the whale optimization algorithm (SVM-WOA) were further proposed to estimate daily maize T based on solar radiation (Rs), vapor pressure deficit (VPD), soil water content (SWC) and leaf area index (LAI), which were compared to the simple multiple linear regression model (MLR). The three models were calibrated using data obtained in 2015 and 2017, and validated using data from 2016 and 2018. The measured seasonal T under SM, RPBF and RPSF was increased by 6.9–19.1%, 12.1–31.3% and 15.3–36.7% compared to that under NM, respectively. The SVM-WOA model (R2 = 0.83–0.89, RMSE = 0.55–0.73 mm d−1, MAE = 0.42–0.53 mm d−1) was superior to the MJS model (R2 = 0.61–0.79, RMSE = 0.75–1.12 mm d−1, MAE = 0.58–0.88 mm d−1) during validation, both of which greatly outperformed the MLR model (R2 = 0.57–0.60, RMSE = 1.28–1.41 mm d−1, MAE = 0.99–1.09 mm d−1) under various mulching methods. The prediction accuracy of the SVM-WOA and MJS models was improved by 47–57% and 19–41% in terms of RMSE compared with that of the MLR model, respectively. Although the physically-based MJS model satisfactorily described the dynamics of rainfed maize T under various mulching methods, the blackbox-type SVM-WOA model was more suitable for estimating daily maize T after a careful calibration with adequate experimental data due to its advantage in modeling complex nonlinear relationships between T and its driving variables.

Keywords: Transpiration; Mulching; Modified Jarvis-Stewart model; Support vector machine; Whale optimization algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000640
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000640

DOI: 10.1016/j.agwat.2021.106799

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000640