Optimization towards sustainable development in shallow groundwater area and risk analysis
Xiaoxing Zhang,
Ping Guo,
Wenxian Guo,
Juan Gong and
Biao Luo
Agricultural Water Management, 2021, vol. 258, issue C
Abstract:
The projected increasing food demand in the coming decades will require substantial water and energy resources. Practical approaches are expected to propose to realize enhancing crop production while towards sustainable development in shallow groundwater area. This study integrates a process-based model, multi-objectives, and fuzzy theory into optimization model to optimize crops water allocation pattern under uncertainties of water diversion and groundwater. The process-based model considers the water exchange between soil and groundwater, water stress and salt stress on crops, and ground water level changes. The multi-objectives defined in this study balances the conflicts of maximizing crop production, maximizing water use efficiency, and minimizing energy consumption. The uncertain amount of water diversion and groundwater is presented as fuzzy numbers. The optimized water allocation pattern of 3 crops in 12 water supply response units in Hetao Irrigation District show that the crop yield does not necessarily reach to the highest potential value, though wheat and maize are allocated more water than sunflower and have larger possibility to reach high crop yield. Significant energy investment is needed for extracting and purifying groundwater to ensure relatively high crop production at the case of possible low available water. Uncertainties of water diversion and groundwater will cause a greater range of ground water level in wheat field, a high risk of water stress in sunflower field and a high risk of very severe salinization in wheat field. The different changing directions of three sub-objectives demonstrate that optimal water allocation has no uniform rule but changes with available water.
Keywords: Shallow groundwater area; Optimization; Uncertainty; Risk; Sustainable agricultural development (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421005023
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421005023
DOI: 10.1016/j.agwat.2021.107225
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().