Managing microbial risks in informal wastewater-irrigated agriculture through irrigation water substitution
Luis Fernando Perez-Mercado,
Cecilia Lalander,
Abraham Joel,
Jakob Ottoson,
Mercedes Iriarte and
Björn Vinnerås
Agricultural Water Management, 2022, vol. 269, issue C
Abstract:
On-farm measures can be used in multi-barrier schemes to manage microbial risks from consumption of wastewater-irrigated vegetables, especially where informality of the practice determines minimal external support for farmers. Evidence indicates that cessation of irrigation greatly reduces microbial contamination on leafy vegetables, but at the expense of produce quality. Replacing wastewater with higher-quality irrigation water during the last days of cultivation is an alternative to cessation of irrigation that does not compromise produce quality. This study evaluated the effect of wastewater substitution under on-farm conditions on different indicators of microbial contamination of lettuce. Lettuce was cultivated in experimental plots and irrigated with three water sources: spring water, water from a wastewater-polluted river and effluent from a primary wastewater treatment plant, but with the river water replaced by spring water in half the plots about two weeks before harvest. The experiment was repeated four times in different seasons. Irrigation water samples collected during cultivation and lettuce samples collected at harvest were analysed for helminth eggs, Escherichia coli and coliphages. Variables characterizing the irrigation practices and environmental conditions were recorded. There were no significant differences in helminth egg or E. coli concentrations on lettuce (medians ranged from −0.7 to −0.1 log10 eggs g−1 and 0.6–1.4 log10 cfu g−1, respectively) between any of the treatments involving wastewater irrigation; no statistical analysis was possible for coliphages because concentrations on lettuce were mostly at or below the detection limit (94% of samples). Variables associated with temperature and soil explained helminth egg and E. coli concentrations on lettuce, while number of days of irrigation with spring water (representing wastewater substitution) was significant only for E. coli. It was concluded that the experimental conditions were suboptimal for successful implementation of wastewater substitution for on-farm microbial risk management, but key variables for successful implementation were identified.
Keywords: Pathogens; Nutrient recycling; Farm-based measures; Irrigation scheduling; Health; Ecotechnology (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002803
DOI: 10.1016/j.agwat.2022.107733
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().