EconPapers    
Economics at your fingertips  
 

Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation

Tiago B. Ramos, Meihan Liu, Paula Paredes, Haibin Shi, Zhuangzhuang Feng, Huimin Lei and Luis S. Pereira

Agricultural Water Management, 2023, vol. 283, issue C

Abstract: Soil salinization problems are widespread in the Hetao plain, Inner Mongolia, resulting from arid climate conditions, a shallow saline water table, poor irrigation water management, and insufficient drainage. This study follows previous research aimed at evaluating crop water use and controlling the salinity build-up in the region, namely using weighing and static water table lysimeters to parameterize a water balance model aimed at the development of appropriate irrigation scheduling. Two sets of five static water table lysimeters, which fixed depths ranged from 1.25 to 2.25 m, were used over two maize crop seasons. The mechanistic HYDRUS-1D model was further used to daily predict measured data on soil water contents, boundary fluxes in the interface between the saturated and unsaturated zones, the electrical conductivity of the soil saturation paste extract (ECe), and the actual crop evapotranspiration (ETc act). The soil water balance helped quantify the combined effect of water and salinity stresses on root water uptake as well as groundwater fluxes into the rootzone. The salt balance showed that the salinity build-up was much related to irrigation and capillary fluxes, and that the autumn irrigation carried out during the non-growing season was essential for controlling soil salinity. The efficiency of the autumn irrigation much depended on groundwater depth and the amount of water applied for salt leaching, with the best results found for the lysimeters with water table depths at 2.0 and 2.25 m (85–100%) for irrigation depths ≥ 220 mm. The lysimeters with shallower water tables never showed a leaching efficiency higher than 88%. This research shows that the sustainability of irrigation in Hetao depends on finding adequate solutions for controlling the depth of the saline groundwater, minimizing capillary fluxes to the rootzone, and developing consequent approaches for autumn irrigation leaching.

Keywords: Autumn irrigation; Electrical conductivity of the soil saturation paste extract; Evapotranspiration; HYDRUS-1D model; Leaching; Upward fluxes (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423001713
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001713

DOI: 10.1016/j.agwat.2023.108306

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001713