A methodology to optimize site-specific field capacity and irrigation thresholds
Hemendra Kumar,
Puneet Srivastava,
Jasmeet Lamba,
Bruno Lena,
Efstathios Diamantopoulos,
Brenda Ortiz,
Bijoychandra Takhellambam,
Guilherme Morata and
Luca Bondesan
Agricultural Water Management, 2023, vol. 286, issue C
Abstract:
The determination of field capacity (FC), irrigation thresholds, and irrigation amounts is characterized by site-specific soil hydraulic properties (SHPs). This study, conducted in two zones (zone 1 and zone 2) delineated based on soil, topography, and historical crop yield in Alabama (USA), focused on determining zone-specific FC using negligible drainage flux qfc criterion. The HYDRUS-1D model was used to optimize zone-specific SHPs using measured soil matric potential (h). The zone-specific FCs were determined using optimized and raw SHPs at 0.01 cm/day as qfc. The results showed that the optimized FC at qfc was at −39 kPa in zone 1 and raw FC was at −15 kPa. However, in zone 2, optimized FC was at −25 kPa and raw FC was at −59 kPa. To validate that optimized values are more accurate than raw values, a relationship between accumulated crop evapotranspiration (ETc) and required irrigation amount was determined using optimized parameters (SHPs and FC) and showed a stronger correlation in both zones than using raw parameters (SHPs and FC). At flux-based FC, the optimized irrigation thresholds and amounts in zone 1 were −88 kPa and 20 mm, and raw irrigation threshold and amount were −58 kPa and 33 mm, respectively. In zone 2, the optimized irrigation thresholds and amounts were −45 kPa and 18 mm, and raw irrigation threshold and amount were −116 kPa and 14 mm, respectively. Therefore, using raw and benchmark FC can result in inefficient irrigation strategies. The proposed novel method of optimizing zone-specific FC and irrigation thresholds can help with adopting timely best irrigation management schemes in respective zones.
Keywords: Soil hydraulic properties; Soil water retention curve; Hydraulic conductivity curve; Negligible drainage flux; HYPROP; HYDRUS; Soil water depletion; Irrigation thresholds; Irrigation management zones; Precision agriculture; Variable rate irrigation; Crop evapotranspiration (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423002500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002500
DOI: 10.1016/j.agwat.2023.108385
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().