Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA
Andre Luiz Biscaia Ribeiro da Silva,
Henrique Boriolo Dias,
Rishabh Gupta,
Lincoln Zotarelli,
Senthold Asseng,
Michael D. Dukes,
Cheryl Porter and
Gerrit Hoogenboom
Agricultural Water Management, 2024, vol. 295, issue C
Abstract:
Optimizing irrigation and nitrogen (N) fertilizer management in irrigated potato crops grown on sandy soils in subtropical regions such as in northeastern Florida, USA is essential to sustain a high yield and to minimize leaching. N applications in this region typically occur at approximately 25–30 days prior to planting (Npre), at emergence (Neme), and at tuber initiation (Nti). However, recent studies suggest that applying N near planting (Npl) enhances fertilizer N use efficiency (FNUE). We combined experimentation with modeling to assess irrigation and N management options for potato in northeastern Florida. We first aimed to evaluate the DSSAT/CSM-SUBSTOR-Potato model using two-year irrigated field experiments conducted on sandy soils with variable N rates and application timings. CSM-SUBSTOR-Potato accurately simulated aboveground plus tuber dry weight [Relative root mean squared error (RRMSE) = 26.4%, Willmott’s index (d) = 0.98] and N accumulation (RRMSE = 28.6%, d = 0.97). Soil moisture and mineral N were captured well overall, but they were often underestimated due to a water table influence that is currently not considered in DSSAT. Subsequently, CSM-SUBSTOR-Potato was applied to simulate tuber yield, N leaching, and FNUE under scenarios of irrigation scheduling and N-fertilizer application (rate/timing) strategies, focusing on Npre versus Npl aiming to improve resource use efficiency. The simulations indicated that a target of 60% and 70% of the available soil water can be safely used as an irrigation strategy to achieve a high yield, while reducing irrigation water applied and N leached to the environment. Overall Npl increased crop N uptake by 10%, tuber yield by 7%, reduced N leached by 13%, and consequently increasing FNUE by 9%, compared to Npre across the irrigation treatments. Thus, Npl should be preferred in sandy soils and climate-risky subtropical environments, along with Neme and Nti as key timings to synchronize N supply with potato growth.
Keywords: Best management practices; Crop simulation model; DSSAT; CSM-SUBSTOR-Potato; Sprinkler irrigation; Solanum tuberosum L. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424001045
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001045
DOI: 10.1016/j.agwat.2024.108769
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).