EconPapers    
Economics at your fingertips  
 

Effects of intercropping and regulated deficit irrigation on the yield, water and land resource utilization, and economic benefits of forage maize in arid region of Northwest China

Maojian Wang, Wei Shi, Muhammad Kamran, Shenghua Chang, Qianmin Jia and Fujiang Hou

Agricultural Water Management, 2024, vol. 298, issue C

Abstract: Intercropping has been widely recognized to have great advantages in terms of increasing yield, controlling pests and diseases, and saving land, particularly in developing countries. Regulated deficit irrigation reduces water consumption and improves water productivity (WP). However, it is unclear whether the combination of intercropping and deficit irrigation could improve crop yield and WP simultaneously. In this experiment, three planting modes, including forage maize (Zea mays L.) monoculture (M), lablab bean (Lablab purpureus L.) monoculture (L), and maize-lablab bean intercropping (ML) were used. Six irrigation modes were set for each planting mode, including severe water deficit (W1), late water deficit (W2), alternate water deficit (W3), late moderate water deficit (W4), early moderate water deficit (W5), and full irrigation (W6). Results showed that compared with M, the ML treatment significantly increased the fresh forage yield (9.8%–17.0%), hay yield (9.5%–13.1%), crude protein yield (22.9%–25.9%), and WP (7.8%–8.7%). The W5 treatment achieved similar fresh forage yield, hay yield, and crude protein yield as that of the W6 treatment but reduced irrigation water by 25% and increased the WP (21.9%–24.8%). Intercropping achieved a high-water equivalence ratio (WER;1.52–1.81) and land equivalence ratio (LER;1.56–1.84), indicating its advantages over monocultures. The W6 treatment had the lowest WER and LER, suggesting that excessive irrigation can reduce the efficiency of utilizing land and water resource in maze-based forage production. Among all treatments, ML–W5 achieved the highest net income and output to input ratio. Overall, intercropping of forage maize and lablab bean with moderate deficit irrigation at an early stage could be used as a high-yield and efficient forage production system in the arid areas of northwest China.

Keywords: Forage maize; Intercropping; Regulated deficit irrigation; Hay yield; Water productivity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424002117
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424002117

DOI: 10.1016/j.agwat.2024.108876

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424002117