Effects of long-term saline water irrigation on soil salinity and crop production of winter wheat-maize cropping system in the North China Plain: A case study
Zimeng Liu,
Congshuai Gao,
Zongzheng Yan,
Liwei Shao,
Suying Chen,
Junfang Niu and
Xiying Zhang
Agricultural Water Management, 2024, vol. 303, issue C
Abstract:
Fresh water shortage is a major problem for grain production in the low plain around Bohai Sea in the North China Plain. Relative abundance of shallow saline groundwater could serve as an alternative water resource for use during dry seasons. A continuous 8-year field study was conducted from 2015 to 2023 to assess the effects of salt content in irrigation water on soil salt accumulation and crop production. Fresh water (FW) with electrical conductivity (EC) at 1.6 dS/m and three levels of saline water (SW) with EC at 4.7 (SW1), 6.3 (SW2) and 7.8 dS/m (SW3) were used for irrigation. Results showed that a single irrigation event at the jointing stage of winter wheat increased grain production averagely by 18.6 %, 22.5 %, 12.9 % and 9.5 % compared with a rain-fed treatment (RF) under FW, SW1, SW2 and SW3, respectively. With an additional irrigation applied at flowering stage, both irrigations using FW increased the yield by 28.6 %, and both irrigations using SW2 increased the yield by 19.3 % compared with RF. Negative effects of salt on winter wheat overshadowed the positive effects of increased water supply under two irrigations both using SW. With an irrigation at maize sowing and the subsequent summer rainy season, the yield of maize following winter wheat was not affected by a one-time SW irrigation to the previous crop, but showed a 5.3 % yield reduction when two irrigations of SW were applied. There was no apparent salt accumulation in the top 1 m of the soil profile, but a slight increasing trend in the salt content in the 1–2 m layer of the soil profile under SW2 and SW3 irrigation. No apparent changes in soil physical properties were observed for continuous application of SW. It was suggested that SW with EC not exceeding 6.3 dS/m should be applied for a single irrigation during the winter wheat season. This practice could alleviate the fresh water shortage in this region and allow for the maintenance of a relatively stable yield of winter wheat and maize without the risk of salt accumulation in the soil.
Keywords: Salt accumulation; Salt leaching; Crop yield; Electrical conductivity in irrigation water; Irrigation timing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003950
DOI: 10.1016/j.agwat.2024.109060
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().