EconPapers    
Economics at your fingertips  
 

Comparison of dynamic and static APRI-models to simulate soil water dynamics in a vineyard over the growing season under alternate partial root-zone drip irrigation

Qingyun Zhou, Shaozhong Kang, Fusheng Li and Lu Zhang

Agricultural Water Management, 2008, vol. 95, issue 7, 767-775

Abstract: In this paper, a two-dimensional (2D) dynamic model of root water uptake was proposed based on soil water dynamic and root dynamic distribution of grapevine, and a function of soil evaporation related to soil water content was defined under alternate partial root-zone drip irrigation (APDI). Then the soil water dynamic model of APDI (dynamic APRI-model) was developed on the basis of the 2D dynamic model of root water uptake and soil evaporation function over the growing season. Soil water dynamic in APDI was respectively simulated by dynamic and static APRI-models. The simulated soil water contents by two models were compared with the measured value. Results showed that values of root-mean-square-error (RMSE) for dynamic APRI-model were less than that of the static APRI-model either in the east side or the west side of grapevine. The average relative error between the simulated and measured value was less than 5% for dynamic APRI-model, indicating that the dynamic APRI-model is better than the static APRI-model in simulating the soil moisture dynamic throughout the growing season under the APDI.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00029-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:95:y:2008:i:7:p:767-775

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:95:y:2008:i:7:p:767-775