Subtrees of spiro and polyphenyl hexagonal chains
Yu Yang,
Hongbo Liu,
Hua Wang and
Hongsun Fu
Applied Mathematics and Computation, 2015, vol. 268, issue C, 547-560
Abstract:
The number of subtrees of a graph and its variations are among popular topological indices that have been vigorously studied. We investigate the subtree numbers of spiro and polyphenyl hexagonal chains, molecular graphs of a class of unbranched multispiro molecules and polycyclic aromatic hydrocarbons. We first present the generating functions for subtrees, through which explicit formulas for computing the subtree number of spiro and polyphenyl hexagonal chains are obtained. We then establish a relation between the subtree numbers of a spiro hexagonal chain and its corresponding polyphenyl hexagonal chain. This allows us to show that the spiro and polyphenyl hexagonal chains with the minimum (resp. second minimum, third minimum) subtree numbers coincide with the ones that attain the maximum (resp. second maximum, third maximum) Wiener indices, and vice versa. The subtree densities of these hexagonal chains are also briefly discussed.
Keywords: Subtree number; Generating function; Spiro hexagonal chains; Polyphenyl hexagonal chains; Subtree density (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315008759
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:268:y:2015:i:c:p:547-560
DOI: 10.1016/j.amc.2015.06.094
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().