Derivatives of tangent function and tangent numbers
Feng Qi
Applied Mathematics and Computation, 2015, vol. 268, issue C, 844-858
Abstract:
In the paper, by induction, the Faà di Bruno formula, and some techniques in the theory of complex functions, the author finds explicit formulas for higher order derivatives of the tangent and cotangent functions as well as powers of the sine and cosine functions, obtains explicit formulas for two Bell polynomials of the second kind for successive derivatives of sine and cosine functions, presents curious identities for the sine function, discovers explicit formulas and recurrence relations for the tangent numbers, the Bernoulli numbers, the Genocchi numbers, special values of the Euler polynomials at zero, and special values of the Riemann zeta function at even numbers, and comments on five different forms of higher order derivatives for the tangent function and on derivative polynomials of the tangent, cotangent, secant, cosecant, hyperbolic tangent, and hyperbolic cotangent functions.
Keywords: Explicit formula; Derivative polynomial; Tangent number; Bernoulli number; Bell polynomial of the second kind; Euler polynomial (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315009078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:268:y:2015:i:c:p:844-858
DOI: 10.1016/j.amc.2015.06.123
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().