EconPapers    
Economics at your fingertips  
 

On edge-rupture degree of graphs

Fengwei Li, Qingfang Ye and Yuefang Sun

Applied Mathematics and Computation, 2017, vol. 292, issue C, 282-293

Abstract: The edge-rupture degree of an incomplete connected graph G is defined as r′(G)=max{ω(G−S)−|S|−m(G−S):S⊆E(G),ω(G−S)>1}, where ω(G−S) and m(G−S), respectively, denote the number of components and the order of a largest component in G−S. This is a reasonable parameter to measure the vulnerability of networks, as it takes into account both the amount of work done to damage the network and how badly the network is damaged. In this paper, firstly, the relationships between the edge-rupture degree and some other graph parameters, namely the edge-connectivity, edge-integrity, edge-toughness, edge-tenacity, diameter, the algebraic connectivity and the minimum degree are established. After that, the edge-rupture degree of the middle graphs of path and cycle are given. Then, we introduced the concept of r′-maximal graph and give some basic results of such graphs. Finally, we introduce the concept of edge-ruptured and strictly edge-ruptured graph, and we establish necessary and sufficient conditions for a graph to be edge-ruptured and strictly edge-ruptured, respectively.

Keywords: Vulnerability; Edge-rupture degree; r′-maximal graph; Boundary; Edge-ruptured graph; Strictly edge-ruptured graph (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316304787
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:292:y:2017:i:c:p:282-293

DOI: 10.1016/j.amc.2016.07.040

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:282-293