EconPapers    
Economics at your fingertips  
 

Polynomial approximation and quadrature on geographic rectangles

M. Gentile, A. Sommariva and M. Vianello

Applied Mathematics and Computation, 2017, vol. 297, issue C, 159-179

Abstract: Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of Sd,d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined on S2 by longitude and (co)latitude (geographic rectangles). We provide the corresponding Matlab codes and discuss several numerical examples on S2.

Keywords: Algebraic cubature; Geographic (spherical) rectangles; Hyperinterpolation; Interpolation; Weakly admissible meshes; Discrete extremal sets (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316305094
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:297:y:2017:i:c:p:159-179

DOI: 10.1016/j.amc.2016.08.014

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:297:y:2017:i:c:p:159-179