Nanofluid flow and heat transfer in a cavity with variable magnetic field
M. Sheikholeslami and
K. Vajravelu
Applied Mathematics and Computation, 2017, vol. 298, issue C, 272-282
Abstract:
Fe3O4–water nanofluid flow in a cavity with constant heat flux is investigated using a control volume based finite element method (CVFEM). Effects of Rayleigh and Hartmann numbers and volume fraction of Fe3O4 (nano-magnetite, an iron oxide) on flow and heat transfer characteristics are analyzed. Results indicate that the temperature gradient is an increasing function of the buoyancy force and the volume fraction of Fe3O4, but it is a decreasing function of the Lorentz force. Also, the rate of heat transfer is augmented with an increase in the Lorentz force. However, the opposite is true on the rate of heat transfer with the buoyancy force. Furthermore, the core vortex moves downward with an increase in the Lorentz force. It is expected that the results presented here will not only provide useful information for cooling of electronic components but also complement the existing literature.
Keywords: Nanofluid; Variable magnetic field; Heat flux; Cooling of electronic components; CVFEM (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316306932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:298:y:2017:i:c:p:272-282
DOI: 10.1016/j.amc.2016.11.025
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().