EconPapers    
Economics at your fingertips  
 

Typical frequency-current curves of neurons obtained from a model based on cellular automaton

T.G. Correale and L.H.A. Monteiro

Applied Mathematics and Computation, 2017, vol. 304, issue C, 136-141

Abstract: Usually, neurons stimulated by constant current exhibit one of two types of behavior: for type-1 neurons, the curve representing “firing frequency versus input current” is continuous; for type-2 neurons, there is a discontinuity in such a curve. Here, we reproduce these typical behaviors from a discrete-time model based on the dynamics of ion channels. In this model, the axonal membrane is considered as a lattice and each patch of this lattice contains a set of ion channels. The state transitions of the voltage-gated ion channels are governed by deterministic rules. We show that the frequency-current relationship obtained from this model is similar to the one derived from the Hodgkin–Huxley equations, which are commonly used to describe type-2 neurons. We also show that our approach can be convenient to model type-1 neurons.

Keywords: Bifurcation; Cellular automaton; Frequency-current curve; Ion channel; Neurodynamics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317300607
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:304:y:2017:i:c:p:136-141

DOI: 10.1016/j.amc.2017.01.042

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:304:y:2017:i:c:p:136-141