EconPapers    
Economics at your fingertips  
 

Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations

Krzysztof Gdawiec and Wiesław Kotarski

Applied Mathematics and Computation, 2017, vol. 307, issue C, 17-30

Abstract: In this paper, an iteration process, referred to in short as MMP, will be considered. This iteration is related to finding the maximum modulus of a complex polynomial over a unit disc on the complex plane creating intriguing images. Kalantari calls these images polynomiographs independently from whether they are generated by the root finding or maximum modulus finding process applied to any polynomial. We show that the images can be easily modified using different MMP methods (pseudo-Newton, MMP-Householder, methods from the MMP-Basic, MMP-Parametric Basic or MMP-Euler–Schröder Families of Iterations) with various kinds of non-standard iterations. Such images are interesting from three points of views: scientific, educational and artistic. We present the results of experiments showing automatically generated non-trivial images obtained for different modifications of root finding MMP-methods. The colouring by iteration reveals the dynamic behaviour of the used root finding process and its speed of convergence. The results of the present paper extend Kalantari’s recent results in finding the maximum modulus of a complex polynomial based on Newton’s process with the Picard iteration to other MMP-processes with various non-standard iterations.

Keywords: Fractals; Polynomiography; Iterations; Root finding; Maximum modulus (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317301492
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:307:y:2017:i:c:p:17-30

DOI: 10.1016/j.amc.2017.02.038

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:307:y:2017:i:c:p:17-30