EconPapers    
Economics at your fingertips  
 

Leapfrog fullerenes and Wiener index

Vesna Andova, Damir Orlić and Riste Škrekovski

Applied Mathematics and Computation, 2017, vol. 309, issue C, 281-288

Abstract: Fullerene graphs are cubic, 3-connected planar graphs with only pentagonal and hexagonal faces. A fullerene is called a leapfrog fullerene, Le(F), if it can be constructed by a leapfrog transformation from other fullerene graph F. Here we determine the relation between the Wiener index of Le(F) and the Wiener index of the original graph F. We obtain lower and upper bounds of the Wiener index of Lei(F) in terms of the Wiener index of the original graph. As a consequence, starting with any fullerene F, and iterating the leapfrog transformation we obtain fullerenes, Lei(F), with Wiener index of order O(n2.64) and Ω(n2.36), where n is the number of vertices of Lei(F). These results disprove Hua et al. (2014) conjecture that the Wiener index of fullerene graphs on n vertices is of order Θ(n3).

Keywords: Fullerene; Distance; Molecular descriptor; Wiener index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317302278
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:309:y:2017:i:c:p:281-288

DOI: 10.1016/j.amc.2017.03.043

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:309:y:2017:i:c:p:281-288