Leapfrog fullerenes and Wiener index
Vesna Andova,
Damir Orlić and
Riste Škrekovski
Applied Mathematics and Computation, 2017, vol. 309, issue C, 281-288
Abstract:
Fullerene graphs are cubic, 3-connected planar graphs with only pentagonal and hexagonal faces. A fullerene is called a leapfrog fullerene, Le(F), if it can be constructed by a leapfrog transformation from other fullerene graph F. Here we determine the relation between the Wiener index of Le(F) and the Wiener index of the original graph F. We obtain lower and upper bounds of the Wiener index of Lei(F) in terms of the Wiener index of the original graph. As a consequence, starting with any fullerene F, and iterating the leapfrog transformation we obtain fullerenes, Lei(F), with Wiener index of order O(n2.64) and Ω(n2.36), where n is the number of vertices of Lei(F). These results disprove Hua et al. (2014) conjecture that the Wiener index of fullerene graphs on n vertices is of order Θ(n3).
Keywords: Fullerene; Distance; Molecular descriptor; Wiener index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317302278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:309:y:2017:i:c:p:281-288
DOI: 10.1016/j.amc.2017.03.043
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().