EconPapers    
Economics at your fingertips  
 

Energy of matrices

Diego Bravo, Florencia Cubría and Juan Rada

Applied Mathematics and Computation, 2017, vol. 312, issue C, 149-157

Abstract: Let Mn(C) denote the space of n × n matrices with entries in C. We define the energy of A∈Mn(C) as (1)E(A)=∑k=1n|λk−tr(A)n|where λ1,…,λn are the eigenvalues of A, tr(A) is the trace of A and |z| denotes the modulus of z∈C. If A is the adjacency matrix of a graph G then E(A) is precisely the energy of the graph G introduced by Gutman in 1978. In this paper, we compare the energy E with other well-known energies defined over matrices. Then we find upper and lower bounds of E which extend well-known results for the energies of graphs and digraphs. Also, we obtain new results on energies defined over the adjacency, Laplacian and signless Laplacian matrices of digraphs.

Keywords: Energy of matrices; Energy of graphs (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317303636
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:312:y:2017:i:c:p:149-157

DOI: 10.1016/j.amc.2017.05.051

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:149-157