EconPapers    
Economics at your fingertips  
 

A fourth-order AVF method for the numerical integration of sine-Gordon equation

Chaolong Jiang, Jianqiang Sun, Haochen Li and Yifan Wang

Applied Mathematics and Computation, 2017, vol. 313, issue C, 144-158

Abstract: In this paper, a new scheme, which has energy-preserving property, is proposed for solving the sine-Gordon equation with periodic boundary conditions. It is obtained by the Fourier pseudo-spectral method and the fourth order average vector field method. In numerical experiments, the new high order energy-preserving scheme is compared with a number of existing numerical schemes for the one dimensional sine-Gordon equation. The new high order energy-preserving scheme for the two dimensional sine-Gordon equation is also investigated. Numerical results are addressed to further illustrate the conservation of energy and the evolutional behaviors of solitons.

Keywords: Energy-preserving; Average vector field method; Pseudo-spectral method; Sine-Gordon equation; Soliton (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317303673
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:313:y:2017:i:c:p:144-158

DOI: 10.1016/j.amc.2017.05.055

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:313:y:2017:i:c:p:144-158