Higher-order derivative-free families of Chebyshev–Halley type methods with or without memory for solving nonlinear equations
Ioannis K. Argyros,
Munish Kansal,
Vinay Kanwar and
Sugandha Bajaj
Applied Mathematics and Computation, 2017, vol. 315, issue C, 224-245
Abstract:
In this paper, we present two new derivative-free families of Chebyshev–Halley type methods for solving nonlinear equations numerically. Both families require only three and four functional evaluations to achieve optimal fourth and eighth orders of convergence. Furthermore, accelerations of convergence speed are attained by suitable variation of a free parameter in each iterative step. The self-accelerating parameter is estimated from the current and previous iteration. This self-accelerating parameter is calculated using Newton’s interpolation polynomial of third and fourth degrees. Consequently, the R-orders of convergence are increased from 4 to 6 and 8 to 12, respectively, without any additional functional evaluation. The results require high-order derivatives reaching up to the eighth derivative. That is why we also present an alternative approach using only the first or at most the fourth derivative. We also obtain the radius of convergence and computable error bounds on the distances involved. Numerical experiments and the comparison of the existing robust methods are included to confirm the theoretical results and high computational efficiency. In particular, we consider a concrete variety of real life problems coming from different disciplines e.g., Kepler’s equation of motion, Planck’s radiation law problem, fractional conversion in a chemical reactor, the trajectory of an electron in the air gap between two parallel plates, Van der Waal’s equation which explains the behavior of a real gas by introducing in the ideal gas equations, in order to check the applicability and effectiveness of our proposed methods.
Keywords: Multipoint iterative methods; Local convergence; Methods with memory; R-order of convergence; Computational efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031730512X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:315:y:2017:i:c:p:224-245
DOI: 10.1016/j.amc.2017.07.051
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().