EconPapers    
Economics at your fingertips  
 

Global stability of an SI epidemic model with feedback controls in a patchy environment

Hong-Li Li, Long Zhang, Zhidong Teng, Yao-Lin Jiang and Ahmadjan Muhammadhaji

Applied Mathematics and Computation, 2018, vol. 321, issue C, 372-384

Abstract: In this paper, we investigate an SI epidemic model with feedback controls in a patchy environment where individuals in each patch can disperse among n(n ≥ 2) patches. We derive the basic reproduction number R0 and prove that the disease-free equilibrium is globally asymptotically stable if R0 ≤ 1. In the case of R0 > 1, we derive sufficient conditions under which the endemic equilibrium is unique and globally asymptotically stable. Our proof of global stability utilizes the method of global Lyapunov functions and results from graph theory. Numerical simulations are carried out to support our theoretical results.

Keywords: Global stability; SI epidemic model; Feedback controls; Patchy environment; Basic reproduction number; Lyapunov function (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031730766X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:321:y:2018:i:c:p:372-384

DOI: 10.1016/j.amc.2017.10.057

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:372-384