EconPapers    
Economics at your fingertips  
 

A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order

Dan Yang, JinRong Wang and O’Regan, D.

Applied Mathematics and Computation, 2018, vol. 321, issue C, 654-671

Abstract: In this article, we study asymptotic and smooth properties of solutions to nonlinear non-instantaneous impulsive differential equations involving parameters of integer order and fractional order. We introduce the concept of continuous dependence and differentiability of solutions and establish sufficient conditions to guarantee the solution depends continuously and is differentiable on the initial condition, impulsive parameters and junction parameters. Finally, two models of non-instantaneous impulsive logistic equations are given to illustrate our results.

Keywords: Non-instantaneous impulsive differential equations; Fractional order; Parameters; Continuous dependence; Differentiability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031730807X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:321:y:2018:i:c:p:654-671

DOI: 10.1016/j.amc.2017.11.025

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:654-671