Compactly supported Parseval framelets with symmetry associated to Ed(2)(Z) matrices
A. San Antolín and
R.A. Zalik
Applied Mathematics and Computation, 2018, vol. 325, issue C, 179-190
Abstract:
Let d ≥ 1. For any A∈Zd×d such that |detA|=2, we construct two families of Parseval wavelet frames with two generators. These generators have compact support, any desired number of vanishing moments, and any given degree of regularity. The first family is real valued while the second family is complex valued. To construct these families we use Daubechies low pass filters to obtain refinable functions, and adapt methods employed by Chui and He and Petukhov for dyadic dilations to this more general case. We also construct several families of Parseval wavelet frames with three generators having various symmetry properties. Our constructions are based on the same refinable functions and on techniques developed by Han and Mo and by Dong and Shen for the univariate case with dyadic dilations.
Keywords: Dilation matrix; Fourier transform; Oblique Extension Principle; Refinable function; Tight framelet (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317308676
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:325:y:2018:i:c:p:179-190
DOI: 10.1016/j.amc.2017.12.008
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).