EconPapers    
Economics at your fingertips  
 

Approximations to the solution of Cauchy problem for a linear evolution equation via the space shift operator (second-order equation example)

Ivan D. Remizov

Applied Mathematics and Computation, 2018, vol. 328, issue C, 243-246

Abstract: We present a general method of solving the Cauchy problem for a linear parabolic partial differential equation of evolution type with variable coefficients and demonstrate it on the equation with derivatives of orders two, one and zero. The method is based on the Chernoff approximation procedure applied to a specially constructed shift operator. It is proven that approximations converge uniformly to the exact solution.

Keywords: Cauchy problem; Linear parabolic PDE; Approximate solution; Shift operator; Chernoff theorem; Numerical method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318300808
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:328:y:2018:i:c:p:243-246

DOI: 10.1016/j.amc.2018.01.057

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:243-246