Analyzing lattice networks through substructures
Hui Lei,
Tao Li,
Yuede Ma and
Hua Wang
Applied Mathematics and Computation, 2018, vol. 329, issue C, 297-314
Abstract:
Analyzing the topology of network structures is an important topic studied from many different aspects of science and mathematics. The Wiener polarity index (number of unordered pairs of vertices at distance 3 from each other) is one of the representative descriptors of graph structures. It was computed for several lattice networks by Chen et al. [11] in an effort to understand the properties of these networks. The Wiener polarity index is a variation of the classic distance-based graph invariant, the Wiener index (sum of distances between all pairs of vertices), which is known to be closely related to the number of substructures. In this paper we examine the numbers of various subgraphs of order 4 for these lattice networks. In addition to confirming their symmetric nature, comparing the numbers of various substructures leads to insights on other less trivial characteristics of these network structures of common interest.
Keywords: Lattice networks; Graph invariants; Subgraphs (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301140
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:329:y:2018:i:c:p:297-314
DOI: 10.1016/j.amc.2018.02.012
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().