EconPapers    
Economics at your fingertips  
 

On the permanental sum of graphs

Tingzeng Wu and Hong-Jian Lai

Applied Mathematics and Computation, 2018, vol. 331, issue C, 334-340

Abstract: Let G be a graph and A(G) the adjacency matrix of G. The polynomial π(G,x)=per(xI−A(G)) is called the permanental polynomial of G, and the permanental sum of G is the summation of the absolute values of the coefficients of π(G, x). In this paper, we investigate properties of permanental sum of a graph, prove recursive formulas to compute the permanental sum of a graph, and show that the ordering of graphs with respect to permanental sum. Furthermore, we determine the upper and lower bounds of permanental sum of unicyclic graphs, and the corresponding extremal unicyclic graphs are also determined.

Keywords: Permanent; Permanental polynomial; Coefficients; Permanental sum (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301917
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:331:y:2018:i:c:p:334-340

DOI: 10.1016/j.amc.2018.03.026

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:334-340