EconPapers    
Economics at your fingertips  
 

Two-step shock waves propagation for isothermal Euler equations

A.V. Porubov, R.S. Bondarenkov, D. Bouche and A.L. Fradkov

Applied Mathematics and Computation, 2018, vol. 332, issue C, 160-166

Abstract: The feedback control algorithm is applied to provide stable propagation of a two-step shock waves for nonlinear isothermal Euler equations despite the desired profile and velocity of the waves do not correspond to an analytical solution of the equations. Two cases are considered: transition to the two-step shock wave solution form the usual one-step wave and generation of a wave with a two-step front from an initially undisturbed velocity field. In both cases arising of two-step shock waves is obtained and an influence of the control algorithm coefficients on the shape of the waves is established.

Keywords: Nonlinear wave; Coupled nonlinear equations; Control methods (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318302285
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:332:y:2018:i:c:p:160-166

DOI: 10.1016/j.amc.2018.03.055

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:332:y:2018:i:c:p:160-166