EconPapers    
Economics at your fingertips  
 

On the edge-Szeged index of unicyclic graphs with given diameter

Guangfu Wang, Shuchao Li, Dongchao Qi and Huihui Zhang

Applied Mathematics and Computation, 2018, vol. 336, issue C, 94-106

Abstract: Given a connected graph G, the edge-Szeged index Sze(G) is defined as Sze(G)=∑e=uv∈Emu(e)mv(e), where mu(e) and mv(e) are, respectively, the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u. In this paper, some extremal problems on the edge-Szeged index of unicyclic graphs are considered. All the n-vertex unicyclic graphs with a given diameter having the minimum edge-Szeged index are identified. Using a unified approach we identify the n-vertex unicyclic graphs with the minimum, second minimum, third minimum and fourth minimum edge-Szeged indices.

Keywords: Edge-Szeged index; Unicyclic graphs; Diameter (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031830403X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:336:y:2018:i:c:p:94-106

DOI: 10.1016/j.amc.2018.04.077

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:336:y:2018:i:c:p:94-106