EconPapers    
Economics at your fingertips  
 

Numerical solution of three-dimensional Volterra–Fredholm integral equations of the first and second kinds based on Bernstein’s approximation

Khosrow Maleknejad, Jalil Rashidinia and Tahereh Eftekhari

Applied Mathematics and Computation, 2018, vol. 339, issue C, 272-285

Abstract: A new and efficient method is presented for solving three-dimensional Volterra–Fredholm integral equations of the second kind (3D-VFIEK2), first kind (3D-VFIEK1) and even singular type of these equations. Here, we discuss three-variable Bernstein polynomials and their properties. This method has several advantages in reducing computational burden with good degree of accuracy. Furthermore, we obtain an error bound for this method. Finally, this method is applied to five examples to illustrate the accuracy and implementation of the method and this method is compared to already present methods. Numerical results show that the new method provides more efficient results in comparison with other methods.

Keywords: Volterra–Fredholm integral equations; Numerical method; Three-variable Bernstein polynomials; Error estimation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305794
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:272-285

DOI: 10.1016/j.amc.2018.07.021

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:272-285