EconPapers    
Economics at your fingertips  
 

Modeling the within-host co-infection of influenza A virus and pneumococcus

Fulgensia Kamugisha Mbabazi, J.Y.T. Mugisha and M. Kimathi

Applied Mathematics and Computation, 2018, vol. 339, issue C, 488-506

Abstract: In this paper a nonlinear mathematical model for a within-host co-infection of influenza A virus and pneumococcus is investigated. Conditions that explain the relations amid RIP and its relationship to the global asymptotic stability of the infection-free steady state are discussed. A graph-theoretic method shows that, the unique endemic steady state is globally asymptotically stable. The sensitivity analysis show that, the pathogen fitness for pneumococcus and influenza A virus are most sensitive to maximum number of bacteria an alveolar macrophage can catch, phagocytosis rate, number of infectious IAV and pneumococcus particles liberated from lysis of infected cells and infection rates of influenza A virus and pneumococcal. Numerical results of the model show that, there exists a biologically important steady state where the two infectious pathogens of unequal strength co-exist and replace each other in the epithelial cell population (with pneumococcus leading) when the pathogen fitness for each infection exceeds unity, and we find that this endemic steady state is globally asymptotically stable. Further, the impact of influenza A virus on pneumococcus and vice-visa leads to a bifurcation state.

Keywords: Within-host model; Co-infection; Global stability; Pathogen fitness; Sensitivity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305964
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:488-506

DOI: 10.1016/j.amc.2018.07.031

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:488-506