Super Rk-vertex-connectedness
Xiaomin Hu,
Yingzhi Tian and
Jixiang Meng
Applied Mathematics and Computation, 2018, vol. 339, issue C, 812-819
Abstract:
For a graph G=(V,E), a subset F ⊆ V(G) is called an Rk-vertex-cut of G if G−F is disconnected and each vertex u∈V(G)−F has at least k neighbours in G−F. The Rk-vertex-connectivity of G, denoted by κk(G), is the cardinality of a minimum Rk-vertex-cut of G. In this paper, we further study the Rk-vertex-connectivity by introducing the concept, called super Rk-vertex-connectedness. The graph G is called super Rk-vertex-connectedness if, for every minimum Rk-vertex-cut S, G−S contains a component which is isomorphic to a certain graph H, where H is related to the graph G and integer k. For the Cayley graphs generated by wheel graphs, H is isomorphic to K2 when k=1 and H is isomorphic to C4 when k=2. In this paper, we show that the Cayley graphs generated by wheel graphs are super R1-vertex-connectedness and super R2-vertex-connectedness. Our studies generalize the main result in [8].
Keywords: Conditional connectivity; Rk-vertex-connectivity; Cayley graphs; Wheel graphs; Super Rk-vertex-connectedness (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305708
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:812-819
DOI: 10.1016/j.amc.2018.07.012
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().