EconPapers    
Economics at your fingertips  
 

The asymptotic expansion of the swallowtail integral in the highly oscillatory region

Chelo Ferreira, José L. López and Ester Pérez Sinusía

Applied Mathematics and Computation, 2018, vol. 339, issue C, 837-845

Abstract: We consider the swallowtail integral Ψ(x,y,z):=∫−∞∞ei(t5+xt3+yt2+zt)dt for large values of |x| and bounded values of |y| and |z|. The integrand of the swallowtail integral oscillates wildly in this region and the asymptotic analysis is subtle. The standard saddle point method is complicated and then we use the simplified saddle point method introduced in (López et al., 2009). The analysis is more straightforward with this method and it is possible to derive complete asymptotic expansions of Ψ(x, y, z) for large |x| and fixed y and z. The asymptotic analysis requires the study of three different regions for argx separated by three Stokes lines. The expansion is given in terms of inverse powers of x13 and x12 and the coefficients are elementary functions of y and z. The accuracy and the asymptotic character of the approximations is illustrated with some numerical experiments.

Keywords: Swallowtail integral; Asymptotic expansions; Modified saddle point method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305666
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:837-845

DOI: 10.1016/j.amc.2018.07.008

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:837-845