Expansion of Preisach density in magnetic hysteresis using general basis functions
Arindam Bhattacharjee,
Atanu K. Mohanty and
Anindya Chatterjee
Applied Mathematics and Computation, 2019, vol. 341, issue C, 418-427
Abstract:
The Preisach model of hysteresis has two parts: a geometrical staircase and a density or weighting function. In typical applications, the underlying density function of hysteresis operators is estimated through partial derivatives of first order reversal curves, or a priori assumed to obey simple functional forms like Gaussian, Lorenzian etc. Here we take a more agnostic and empirical approach, and expand the density in a general form using the spectrum of the Laplace operator on a bounded triangular domain. Transforming the input to the same bounded domain, we have a nonlinear parameter fitting problem. We fit parameters to our own magnetic hysteresis data directly using complex waveforms, for both soft and hard loops. For hard loops, if the Preisach density is to be kept strictly nonnegative (as is usual), a nonlinear transformation of the Preisach output is needed. Additionally, the Preisach density is consists of a single hump for soft loops and three distinct humps for hard loops. Our fitted density function, based on a general expansion, contains several coefficients, but subsequent simulation is quick. The main contribution of this paper is a direct demonstration of fitting the density function without making a priori assumptions about the functional form.
Keywords: Preisach model; Preisach density; Basis functions; Magnetic hysteresis (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318307811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:341:y:2019:i:c:p:418-427
DOI: 10.1016/j.amc.2018.09.009
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).