EconPapers    
Economics at your fingertips  
 

Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions

Pingrun Li

Applied Mathematics and Computation, 2019, vol. 344-345, 116-127

Abstract: In this paper we study some classes of generalized singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions. Such equations can be transformed into Riemann boundary value problems with two unknown functions on two parallel straight lines via Fourier transformation. The general solutions and the conditions of solvability are obtained by means of the classical boundary value theory, of the theory of Fourier analysis, and of the principle of analytic continuation. This paper will be of great significance for the study of improving and developing complex analysis, integral equation and boundary value problem. Therefore, the classic Riemann boundary value problem is extended further.

Keywords: Singular integral equations of convolution type; Riemann boundary value problems; Cauchy kernel; The class of exponentially increasing functions (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031830852X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:344-345:y:2019:i::p:116-127

DOI: 10.1016/j.amc.2018.09.065

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:344-345:y:2019:i::p:116-127