New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system
Haijun Wang and
Guili Dong
Applied Mathematics and Computation, 2019, vol. 346, issue C, 272-286
Abstract:
This note revisits a 4-D quadratic autonomous hyper-chaotic system in Zarei and Tavakoli (2016) and mainly considers some of its rich dynamics not yet investigated: global boundedness, invariant algebraic surface, singularly degenerate heteroclinic cycle and limit cycle. The main contributions of the work are summarized as follows: Firstly, we prove that for 4a ≥ c > 2a > 0, d > 0 and e > 0 the solutions of that system are globally bounded by constructing a suitable Lyapunov function. Secondly, Q=x3−12ax12=0 is found to be one of invariant algebraic surfaces with the cofactor -4a for the model. Thirdly, numerical simulations for c=0 not only illustrate different types of infinitely many singularly degenerate heteroclinic cycles near which chaotic attractors or limit cycles generate, but also that some of more degenerate (in term of a pure imaginary pair, one zero and one negative eigenvalue) or stable (in sense of three negative eigenvalues and one null eigenvalue) non-isolated equilibria (0,0,x3,0)(x3∈R) directly change into the limit cycles or chaotic attractors with a small perturbation of c > 0, which is in the absence of singularly degenerate heteroclinic cycles and degenerate pitchfork bifurcation at the non-isolated equilibria. In particular, some kind of forming mechanism of Lorenz attractor and the hyper-chaotic attractor of that system with (a,b,c,d,e)=(10,28,83,1,16) is revealed, which are collapses of singularly degenerate heteroclinic cycles and explosions of stable non-isolated equilibria. Finally, circuit experiment implements the aforementioned hyper-chaotic attractor, showing very good agreement with the simulation results.
Keywords: Four-dimensional quadratic autonomous hyper-chaotic system; Global boundedness; Lyapunov function; Invariant algebraic surface; Singularly degenerate heteroclinic cycle (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031830866X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:346:y:2019:i:c:p:272-286
DOI: 10.1016/j.amc.2018.10.006
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().