Analysis of an age-structured multi-group heroin epidemic model
Jinliang Wang,
Jing Wang and
Toshikazu Kuniya
Applied Mathematics and Computation, 2019, vol. 347, issue C, 78-100
Abstract:
This paper is concerned with the mathematical analysis of an age-structured multi-group heroin epidemic model, which can be used to describe the spread of heroin habituation and addiction in heterogeneous environment. Under general assumptions on the different level of susceptibility and the relapse to frequent heroin use, we establish sharp criteria for heroin spreading and vanishing. We rigorously investigate the well-posedness of the model, the existence of equilibria, the asymptotic smoothness of solution orbits, and the global stability of equilibria. Specifically, we rigorously show that the drug-free equilibrium is globally asymptotically stable if a threshold value ℜ0 is less than one, and the unique drug-endemic equilibrium is globally attractive if ℜ0 is greater than one. In the proofs of global stability of equilibria, we construct suitable Lyapunov functions by using a graph-theoretic method.
Keywords: Heroin epidemic; Multi-group model; Age-structured model; Global stability; Lyapunov functions (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318309858
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:347:y:2019:i:c:p:78-100
DOI: 10.1016/j.amc.2018.11.012
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().