EconPapers    
Economics at your fingertips  
 

A class of third order iterative Kurchatov–Steffensen (derivative free) methods for solving nonlinear equations

V. Candela and R. Peris

Applied Mathematics and Computation, 2019, vol. 350, issue C, 93-104

Abstract: In this paper we show a strategy to devise third order iterative methods based on classic second order ones such as Steffensen’s and Kurchatov’s. These methods do not require the evaluation of derivatives, as opposed to Newton or other well known third order methods such as Halley or Chebyshev. Some theoretical results on convergence will be stated, and illustrated through examples. These methods are useful when the functions are not regular or the evaluation of their derivatives is costly. Furthermore, special features as stability, laterality (asymmetry) and other properties can be addressed by choosing adequate nodes in the design of the methods.

Keywords: Iterative methods; Nonlinear equations; Order of convergence; Stability; Derivative free methods (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318311032
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:350:y:2019:i:c:p:93-104

DOI: 10.1016/j.amc.2018.12.042

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:93-104