EconPapers    
Economics at your fingertips  
 

An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method

Qiao Wang, Wei Zhou, Y.T. Feng, Gang Ma, Yonggang Cheng and Xiaolin Chang

Applied Mathematics and Computation, 2019, vol. 353, issue C, 347-370

Abstract: The improved interpolating moving least-square (IIMLS) method has been widely used in data fitting and meshfree methods, and the obtained shape functions have the property of the delta function, compared with those obtained by the moving least-square (MLS) method. However, the moment matrix in IIMLS may be singular or ill-conditioned because of the ill quality of the point sets used. In this paper, the weighted orthogonal basis functions are applied in IIMLS to obtain a diagonal moment matrix, which can overcome the difficulty caused by directly inversing singular or ill-conditioned matrices. However, the weighted orthogonal basis functions cannot change the nature of the singular or ill-conditioned moment matrix, since the diagonal elements of the new moment matrix may be zero or close to zero. Thus, an adaptive scheme is further employed to resolve this problem by ignoring the contribution from the zero or very small diagonal elements in the diagonal moment matrix. Combined with shifted and scaled polynomial basis functions, a stabilized adaptive orthogonal IIMLS (SAO-IIMLS) approximation is obtained. Based on this approximation, a new boundary element-free method is proposed for solving elasticity problems. Numerical results for curve fitting, surface fitting and the new boundary element-free method have shown that the proposed SAO-IIMLS approximation is accurate, stable and performs well for ill quality point sets.

Keywords: Improved interpolating moving least-square; Data fitting; Boundary element-free method; Weighted orthogonal basis functions; Stabilized adaptive orthogonal IIMLS (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319301110
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:353:y:2019:i:c:p:347-370

DOI: 10.1016/j.amc.2019.02.013

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:353:y:2019:i:c:p:347-370