EconPapers    
Economics at your fingertips  
 

Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems

G. Albi, M. Herty and L. Pareschi

Applied Mathematics and Computation, 2019, vol. 354, issue C, 460-477

Abstract: We are interested in high-order linear multistep schemes for time discretization of adjoint equations arising within optimal control problems. First we consider optimal control problems for ordinary differential equations and show loss of accuracy for Adams–Moulton and Adams–Bashforth methods, whereas BDF methods preserve high-order accuracy. Subsequently we extend these results to semi-Lagrangian discretizations of hyperbolic relaxation systems. Computational results illustrate theoretical findings.

Keywords: Linear multistep methods; Optimal control problems; Semi-Lagrangian schemes; Hyperbolic relaxation systems; Conservation laws (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319301195
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:354:y:2019:i:c:p:460-477

DOI: 10.1016/j.amc.2019.02.021

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:460-477