EconPapers    
Economics at your fingertips  
 

Steplength selection in gradient projection methods for box-constrained quadratic programs

Serena Crisci, Valeria Ruggiero and Luca Zanni

Applied Mathematics and Computation, 2019, vol. 356, issue C, 312-327

Abstract: The role of the steplength selection strategies in gradient methods has been widely investigated in the last decades. Starting from the work of Barzilai and Borwein (1988), many efficient steplength rules have been designed, that contributed to make the gradient approaches an effective tool for the large-scale optimization problems arising in important real-world applications. Most of these steplength rules have been thought in unconstrained optimization, with the aim of exploiting some second-order information for achieving a fast annihilation of the gradient of the objective function. However, these rules are successfully used also within gradient projection methods for constrained optimization, though, to our knowledge, a detailed analysis of the effects of the constraints on the steplength selections is still not available. In this work we investigate how the presence of the box constraints affects the spectral properties of the Barzilai–Borwein rules in quadratic programming problems. The proposed analysis suggests the introduction of new steplength selection strategies specifically designed for taking account of the active constraints at each iteration. The results of a set of numerical experiments show the effectiveness of the new rules with respect to other state of the art steplength selections and their potential usefulness also in case of box-constrained non-quadratic optimization problems.

Keywords: Box-constrained optimization; Gradient projection methods; Steplength rules; Hessian spectral properties (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319302462
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:356:y:2019:i:c:p:312-327

DOI: 10.1016/j.amc.2019.03.039

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:312-327