EconPapers    
Economics at your fingertips  
 

Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations

A. Pratap, R. Raja, J. Cao, C.P. Lim and O. Bagdasar

Applied Mathematics and Computation, 2019, vol. 359, issue C, 241-260

Abstract: This article, we explore the asymptotic stability and asymptotic synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous neuron activation functions (FCGNNDDs). First, under the framework of Filippov theory and differential inclusion theoretical analysis, the global existence of Filippov solution for FCGNNDDs is studied by means of the given growth condition. Second, by virtue of suitable Lyapunov functional, Young inequality and comparison theorem for fractional order delayed linear system, some global asymptotic stability conditions for such system is derived by limiting discontinuous neuron activations. Third, the global asymptotic synchronization condition for FCGNNDDs is obtained based on the pinning control. At last, two numerical simulations are given to verify the theoretical findings.

Keywords: Asymptotic stability; Asymptotic synchronization; Fractional order systems; Time-delay; Filippov’s solutions; Pinning control (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319303509
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:359:y:2019:i:c:p:241-260

DOI: 10.1016/j.amc.2019.04.062

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:241-260